Cascades: triggered data/MC disagreements

J.Kiryluk (LBNL)

Calibration phone meeting 06/10/2008

Selection of slides presented at the collaboration meeting April, 2008 Madison

MC data used (2007 AHA photon tables)

- 1. Background MC (7h livetime)
 - Corsika (single muon) dataset 763
 - Corsika (coincident muon) dataset 861
- 2. Signal: only <u>electron</u> neutrino:
 - NuGen, E_v^{-2} spectrum, $\log_{10}(E_v) = 1.7 9.0$
 - dataset 762: 50M generated, 0.34M triggered events

IC22 Trigger and Pole Cascade Filter rates

Experimental rates from Monitoring page, Run list from A. Goldschmidt

Trigger rate: temperature variation

Data: 515 Hz to 615 Hz

MC: 535 Hz

CascadeFilter rate:

Data: 18 Hz to 22 Hz

MC: 13.7 Hz

Data/MC > 50% disagreement

CascadeFilter/Trigger rate ratio:

Data: 0.032-0.036 (stable)

MC: 0.026

(MC_signal: 0.71)

IC22 Cascade Filter Level2 and Level3 events Data vs MC comparison

-1000-800-600-400-200 0 200 400 600 800 1000 COG-X

IC22 Cascade Filter Level2: Data vs MC

Shape of COG-X and -Y: data well described by MC

IC22 Data vs MC: Level2 and Level3 (1)

Improvement in Rate vs COGZ between data and MC after Level3 cut, but still a problem

*) level3 cuts: TrackLlh_Zenith>1.4 rad && RllhTrack/RllhCscd >1

IC22 Data vs MC: Level2 and Level3 (2)

Improvement between data and MC after Level3 cut

IC22 Cascade Filter events (level2):

MC does not simulate properly a small fraction (a few per cent) of events with large charge near top of the detector

IC22 Cascade Filter Level2: Total charge per Dom vs depth

IC22 Cascade Filter Level2:

Total charge/Dom vs String X(Y)-position

(Fixed depth: i.e. take out the possible effect of ice layers)

Good agreement between data and MC for DOM#55 (all strings)

CascadeFilter Level2: Total charge/Dom vs Dom X(Y)-position

Summary:

- -CascadeFilter Level2: diagreement between data and MC (#strings, #channels, cascade filter rates)
- -Cascade Filter Level3 cuts (N_bg/N_sig = 18x10^3) improve data/mc disagreement, more sophisticated cuts are needed.
- -Small fraction of events with (cascade filter Level2) large charge near top of the detector is not described by current MC simulations.

BACKUP

IC22 Cascade Filter Level2: Data vs MC (1)

Cuts used in CascadePole Filter (P. Toale && M. D'Agostino)

- LineFit Velocity < 0.25
- Tensor of Inertia Evalratio > 0.109

Backup: Level3 cut definition

Cascade Filter Level2: Data vs MC (5)

Reconstruction results from TrackLlh and CscdLlh algorithms

- Corsika (single muons): Events with Zenith>1.4 rad are misreconstructed downgoing "leading" muons
- <u>Data:</u> Excess of 'cascade-like' events with small values of reconstructed Zenith angle and small values of RllhTrack/RllhCscd are for COGZ at the bottom of IC22

Reconstruction Results at Level2 TrackLlh algorithm: reconstructed Zenith (Data vs MC)

Interpretation from Corsika (single muon): Events with Zenith>1.4 rad are misreconstructed downgoing "leading" muons

Real data: excess of 'cascadelike' events with small values of reconstructed Zenith angle are at the bottom of the detector

Reconstruction Results at Level2 CscdLlh algorithm: RllhTrack/RllhCscd (Data vs MC)

Real data: excess of 'cascadelike' events with small values of RIIhTrack/RIIhCscd are at the bottom of the detector

Level3 Cuts: Reconstruction Results at Level2

TrackLlh Zenith vs RllhTrack/RllhCscd

Proposed cut for Level3 processing (common for all cascade analyses):

Zenith > 1.2 and RIITrack / RIIhCscd > 0.8

This cut is <u>not</u> optimal for individual analyses but seems to have acceptable by rejection factor and signal passing rates for both extraterrestrial and atmospheric cascades analyses.

Lesson learned from Muon-group Potential with 32-iteration track reconstruction (CPU consuming) To better reconstruct direction and Make cut on Zenith more effcient

Extraterrestrial v_e : Level3 Cuts Optimalisation

First try (not final method): Find the best combination of cuts on Zenith and RIIhTrack/RIIhCscd by minimizing sqrt(N_bg)/N_sig (using Monte Carlo only) assuming 240 days of livetime and signal flux(es) = $1.0 \times 10^{-6(7)}$ E⁻².

Result: Level3 cut = Zenith> 1.4 rad && RllhTrack/RllhCscd > 1.0

Cascade Filter Level2: First hit charge per Dom vs depth

